ELECTROWEAK PHYSICS at THE TEVATRON AND LHC

John Freeman
Fermi National Accelerator Laboratory

Unification

- Electromagnetic and weak forces unified by
 - Very high temperatures
 - Very smart theorists
 Weinberg, Glashow, Salam (1960's)

Weinberg, "A Model of Leptons" Phys. Rev. Lett. 19:1264-1266, 1967 → 7080 total citations!! Split occurs at a sweltering

$$O\left(\frac{M_{W/Z}}{K_B}\right) \sim 10^{15} K$$

1 trillionth of a second after the Big Bang

$$K_B \rightarrow \text{Boltzmann's constant}$$

Verification

Gargamelle, CERN, 1973

→ neutral particle (Z)

UA1+UA2, SPS, CERN 1983 → W, Z discovery

Perform overconstrained fit to the SM!

$$\longrightarrow M_H = 87^{+35}_{-26} GeV/c^2$$

Electroweak Production

The LHC "vs" the Tevatron

LHC PLAN

- 2010: ~100 /pb @ 7 TeV
- 2011: ~1 /fb @ 7 TeV
- 2012: Shutdown
- 2013-20xx: goal is 10s of /fb at 14 TeV!

PROCESS	~ evts/fb (Tevatron)	~ evts/fb (LHC@14 TeV)
W	25M	180M
Z	7.5M	60M
WW	12.4k	111.6k
WZ	3.7k	47.8k
ZZ	1.43k	14.8k
Wy	19.3k	451k
Zγ	4.74k	219k

1 /fb = 1000 /pb , a unit of the number of particle collisions

- -LHC will bring massive statistics!
- → ~10x higher production rate per collision (assuming 14 TeV)
- \rightarrow 10-100x more data

Tevatron: CDF and D0

	CDF	D0
Tracker Coverage	$ \eta $ < 2	$ \eta $ < 3
Tracker Resolution (%)	0.1 <i>P</i> _{<i>T</i>}	0.14 <i>P_T</i> ⊕ 1.5
Emcal Coverage	$ \eta $ < 3.6	$ \eta $ < 4.2
Emcal Resolution (%)	$13.7/\sqrt{E_T}$ ① 1-2	20/ \sqrt{E} $lacktriangle$ 2
Muon Coverage	$ \eta $ < 1.5	$ \eta $ < 2

LHC: ATLAS and CMS

	ATLAS	CMS
Tracker Coverage	$ \eta < 2.5$	$ \eta $ < 2.6
Tracker Resolution (%)	0.034 <i>P</i> _T ⊕ 1.5	$0.015_{P_T} \oplus 0.5$
Emcal Coverage	$ \eta $ < 4.9	$ \eta $ < 4.9
Emcal Resolution (%)	10√ <i>E</i> ⊕ 0.2	$3\sqrt{E}$ \odot 0.5
Muon Coverage	$ \eta $ < 2.7	$ \eta $ < 2.6

The W Mass

$$M_{top}$$
 = 173.1 +/- 1.3 GeV/ c^2 hep-ex/0903.2503v1 M_W = 80.399 +/- 0.023 GeV/ c^2

• Hold M_H fixed:

$$\Delta M_{top} = \underbrace{1.3 \, GeV/c^2}_{1\sigma_{top}} \rightarrow \Delta M_W = \underbrace{8 \, MeV/c^2}_{0.3 \, \sigma_W}$$

Improving W mass measurement crucial for improved Higgs mass constraint!

Best W Mass Measurement

Detector systematics scale with Z statistics

Theory systematics do not!

 $M_W = 80.401 \pm 0.043 \, MeV$

Error Type	MeV
Statistical	21
e energy scale	34
e energy resolution	2
e shower model	4
e energy loss model	4
Recoil model	6
e efficiencies	5
Backgrounds	2
PDFs	10
QED	7
W Pt	2

m _T (GeV)	>	5
$m_T^W \equiv \sqrt{2p_T^\ell p_T^{\nu} (1 - \cos(\phi^\ell - \phi^{\nu}))}$ = "transverse mass"	25 Ge	4

- 499830 $W \rightarrow e \nu$ candidate events
 - 50 < m_T < 200 GeV
 - Electron E_T , E_{Tmiss} > 25 GeV
 - Recoil energy < 15 GeV
- Fit to $m_{\scriptscriptstyle T}$, electron $E_{\scriptscriptstyle T}$, $E_{\scriptscriptstyle Tmiss}$

John Freeman, APS 20

A Tevatron "Legacy" Measurement

Summer '09: combine D0 1/fb with CDF 200 /pb $\rightarrow M_W = 80.420 +/- 0.031 \text{ MeV}$

Tevatron surpasses LEP!

(arXiv:0908.1374)

- In the works:
 - 2.4 /fb from CDF

4.4 /fb from D0

Medium term: error < 25 MeV Long term: error ~ theory limit

Portable Document Format

Probability Density Function

PDF → Parton Distribution Function

- "Partons": the quarks + gluons in the p/pbar
 - W, Z production occurs through parton collisions (qqbar → W,Z)

Uncertainty on PDFs

Uncertainty on W eta distribution

Uncertainty on W templates

Uncertainty on W mass

Portable Document Format

Probability Density Function

PDF → Parton Distribution Function

- "Partons": the quarks + gluons in the p/pbar
 - W, Z production occurs through parton collisions (qqbar → W,Z)
- At LHC: W, Z primarily from sea quarks

Uncertainty on PDFs

Uncertainty on W eta distribution

Uncertainty on W templates

Uncertainty on W mass

Portable Document Format

Probability Density Function

PDF → Parton Distribution Function

- "Partons": the quarks + gluons in the p/pbar
 - W, Z production occurs through parton Uncertainty on PDFs collisions (qqbar → W,Z)
- At LHC: W, Z primarily from sea quarks
- At Tevatron: W, Z primarily from valence quarks Uncertainty on W templates

Uncertainty on W mass

Uncertainty on W eta distribution

W+/W- Asymmetry

Z Rapidity

- Can fully reconstruct rapidity of Z → II
- Good agreement seen between theory and experiment w/ CDF measurement
- Used in latest available PDFs

W Mass at LHC

- LHC has the potential to be competitive with Tevatron
- Statistics will not be an issue...
 - 30M W events in 10/fb → 2 MeV effect!
- ...but systematics will
 - Need to understand the detectors (energy calibration, etc.)
 - At LHC energies, PDFs less well understood
 → 20-25 MeV effect
- What work needs to be done?

First, let's find the W...

John Freeman, APS

Observing the W

50 /pb (~100 /pb at 7 TeV) → data this year

	# signal (10k)	# bkgnd (10k)	Pred. (nb)
$W \rightarrow ev$	22.67 +/- 0.04	0.61 +/- 0.92	20.52 +/-0.04 +/-1.06
$W \rightarrow mu \ v$	30.04 +/- 0.05	2.01 +/- 0.12	20.53 +/- 0.04 +/- 0.63

- Good early measurement: low background, simple cuts, robust
- 1 /fb, theory becomes limiting factor on cross section
- Luminosity standard candle?

Observing the Z

- Z is extremely useful for early calibrations
 - Easily observe Z with ~10 pb
 - Eventually can go from 1 to 0.02% uncertainty on tracker momentum resolution, scale, 10 to 1% uncertainty on calorimeter energy resolution!
 - Very little background → can calculate lepton tagging efficiencies

W Mass at the LHC

10 /fb

3.5M Z's

Cuts assumed: Lepton Pt > 20 GeV Etmiss > 20 GeV |eta| < 2.5 Recoil < 30 GeV

SOURCE	PREDICTED ERR (MeV)	
Statistics	2	40M W's
Energy scale	4	
Energy resolution	1	W, Z rapidity highly
Lepton efficiency	4.5(e), <1(mu)	correlated
Recoil	5	2.255
Background	1.5	2.24
PDFs	1	- ************************************
W width	1	2.225 + +
W pt	1	2.15 2.155 2.16 2.165 2.17 2.175 2.18 r ^Z
QED	<1 (i.e., Z will tell you about W PDFs)
Total	8(e), 7(mu)	

[&]quot;Reevaluation of the LHC potential for the measurement of $M_{_W}$ " Eur. Phys. J. C57:627-651, 2008

Two Reasons to Study Two Bosons

- Can be studied as indirect evidence of NP (New Physics)
- Cross-sections and decay signatures not unlike that of the light Higgs

$$\begin{array}{cccc} H \rightarrow bb & \leftrightarrow & W/Z \rightarrow qq \\ H \rightarrow bb & \leftrightarrow & Z \rightarrow bb \end{array}$$

Two Reasons to Study Two Bosons

- Can be studied as indirect evidence of NP (New Physics)
- Cross-sections and decay signatures not unlike that of the light Higgs

$$\begin{array}{cccc} H \rightarrow bb & \leftrightarrow & W/Z \rightarrow qq \\ H \rightarrow bb & \leftrightarrow & Z \rightarrow bb \end{array}$$

Process	Sensitive to	Discrim. Var	Data
$W \gamma \rightarrow l \nu \gamma$	$WW \gamma$	Photon Et	0.7 /fb
$WV \rightarrow l \ \nu \ jj$	$WW \gamma$, WWZ	W/Z->jj Pt	1.1 /fb
$WW \rightarrow l \nu l \nu$	$WW \gamma$, WWZ	Lepton Ets	1 /fb
$WZ \rightarrow l \nu l l$	WWZ	Z->II Pt	1 /fb

D0 Studies: Charged triple gauge couplings

arXiv:/0907.4952

The Result

 Could be competitive with LEP if combined w/ CDF at current amount of data

Phys. Rev. Lett. 102, 201802 (2009)

John Freeman, APS 2010

TGC at the LHC

Three advantages over Tevatron

30 /fb

- Higher diboson cross sections
- Higher energy → new physics manifests itself here
- Higher luminosity (next couple of years...)

WZ: Highest energy where the action's at!

cf. CDF, 1.9 /fb : $\Delta \kappa_Z \in (-1.09, 1.40)$, $\lambda_Z \in (-0.18, 0.18)$

John Freeman, APS 2010

A First Step Into W/Z → Jets

- The first "light Higgs analog" observation
 - WW/WZ/ZZ $\rightarrow E_{\mathit{Tmiss}}$ + jets
- Tricky MUCH more background than W/Z → leptons!
- Tevatron performance + innovative techniques

$$5.3 \sigma$$
 (p = 1.2e-7) \rightarrow Observation!

Event Type	# Events Fitted	
Electroweak (bkgnd)	36140 +/- 1230	
Non-electroweak	7249 +/- 1130	
WW+WZ+ZZ	1516 +/- 239	

Measured xsec = 18 + /- 3.8 pb(SM prediction = 16.8 + /- 0.5 pb) ...And Another Step

$$EPD = \frac{P_{WW} + P_{WZ}}{P_{WW} + P_{WZ} + P_{schan} + P_{tchan} + P_{Wjj} + P_{Wgj} + P_{Wbb} + P_{W}}$$

Measured xsec = 16.6 + 3.5 - 3.0 pb(SM predicted = 15.1 + / - 0.8 pb)

Measured xsec = 18.1 +/- 4.3 pb

• Two observations of WW/WZ \rightarrow I+ E_{Tmiss} + jj with two observables

Alternate Searches for NP (I)

hep-ex/0803.0030v2

"THE RADIATION ZERO"

- For product of charge and eta difference between W and gamma, expect dip about 0 in SM
- "MUH" Minimal Unimodal Hypothesis has W with no magnetic dipole moment
 John Freeman, APS 2010

Alternate Searches for NP (II)

NP behind production of a photon and a pion?

BR(W-> $\pi\gamma$)/BR(W->ev) < 6.4 x 10⁻⁵ at 95% confidence

Conclusions

- A physical phenomena that affects every particle* is bound to be a broad topic – I've given you a snapshot of it in the context of turn-ofthe-decade hadron collider physics
- Going forward
 - Will be interesting to see how precisely the W mass can be measured (→ how precise the Higgs constraint can be)
 - Will NP be discovered first as an indirect loop phenomenon?
 - Take it away, LHC...

*except the gluon

BACKUPS

W Forward-Backward Asymmetry

$$A(y_W) = \frac{d\sigma(W^+)/dy_W - d\sigma(W^-)/dy_W}{d\sigma(W^+)/dy_W + d\sigma(W^-)/dy_W}$$

 U carries more momentum than d → W+(-) in direction of u (ubar)

eman, APS 2010

Plots related to LHC calibration

Portable Document Format

Probability Density Function

PDF → Parton Distribution Function

- "Partons": the quarks + gluons in the p/pbar
 - W, Z production occurs through parton collisions (qqbar → W,Z)
- PDFs model the momenta carried by u, d, g, etc...
- $< P_u > > < P_d >$ at Tevatron
 - W+ (-) in direction of p (pbar)

Uncertainty on W/Z eta distribution
Uncertainty on W templates
Uncertainty on W mass

TGC at the LHC

- Three advantages over Tevatron
 - Higher diboson cross sections
 - Higher energy → new physics manifests itself at high M(VV)
 - Higher luminosity (next couple of years...)

cf. CDF, 1.9 /fb...

1	Coupling	Expected Limit	Expected Limit	Limit	Limit
		w/o Systematics	w/ Systematics	w/o Systematics	w/ Systematics
- 1	Δg	(-0.15,0.25)	(-0.16,0.26)	(-0.15,0.26)	(-0.22,0.32)
	$\Delta \kappa$	(-0.81,1.09)	(-0.88,1.16)	(-0.72,1.03)	(-1.09,1.40)
	λ	(-0.13,0.14)	(-0.14,0.15)	(-0.13,0.14)	(-0.18,0.18)

Table: WZ Results for $\Lambda = 1.5 \text{ TeV}$

Detecting Particles: A Primer

ALL DETECTORS RELEVANT TO THIS TALK ARE BUILT ON THESE PRINCIPLES

System	Good for	Reason	Made of
Tracking	Charged particle momenta	Track curvature in B-field	Silicon pixels/strips, wires
Electromagnetic calorimeter	electron/photon energies	Bremsstrahlung (e), pair production (g)	Scintillator, possibly absorber
Hadronic calorimeter	Hadrons	Nuclear interaction	Scintillator+absorber
Muon	Muons	The muon can make it there	Absorber, wires